Full-wave Analysis of Large Conductor Systems
نویسندگان
چکیده
Designers of high-performance integrated circuits are paying ever-increasing attention to minimizing problems associated with interconnects such as noise, signal delay, crosstalk, etc., many of which are caused by the presence of a conductive substrate. The severity of these problems increases as integrated circuit clock frequencies rise into the multiple gigahertz range. In this thesis, a simulation tool is presented for the extraction of full-wave interconnect impedances in the presence of a conducting substrate. The substrate effects are accounted for through the use of full-wave layered Green’s functions in a mixed-potential integral equation (MPIE) formulation. Particularly, the choice of implementation for the layered Green’s function kernels motivates the development of accelerated techniques for both their 3D volume and 2D surface integrations, where each integration type can be reduced to a sum of 1D line integrals. In addition, a set of high-order, frequency-independent basis functions is developed with the ability to parameterize the frequency-dependent nature of the solution space, hence reducing the number of unknowns required to capture the interconnects’ frequency-variant behavior. Moreover, a pre-corrected FFT acceleration technique, conventional for the treatment of scalar Green’s function kernels, is extended in the solver to accommodate the dyadic Green’s function kernels encountered in the substrate modeling problem. Overall, the integral-equation solver, combined with its numerous acceleration techniques, serves as a viable solution to full-wave substrate impedance extractions of large and complex interconnect structures. Thesis Supervisor: Jacob K. White Title: Professor Thesis Supervisor: Luca Daniel Title: Assistant Professor
منابع مشابه
Design and Efficient Analysis of Large Reflectarray Antenna
In recent years reflectarray antennas have received considerable attention due to their unique capabilities. However, due to their large size, analyzing the performance of these antennas using traditional full wave finite-difference and finite-element techniques requires considerable computational resources. In this paper, we present an efficient method to accurately analyze these class of ante...
متن کاملکاربرد روش معادله سهموی در تحلیل مسائل انتشار امواج داخل ساختمان
With the rapid growth of indoor wireless communication systems, the need to accurately model radio wave propagation inside the building environments has increased. Many site-specific methods have been proposed for modeling indoor radio channels. Among these methods, the ray tracing algorithm and the finite-difference time domain (FDTD) method are the most popular ones. The ray tracing approach ...
متن کاملClassical wavelet systems over finite fields
This article presents an analytic approach to study admissibility conditions related to classical full wavelet systems over finite fields using tools from computational harmonic analysis and theoretical linear algebra. It is shown that for a large class of non-zero window signals (wavelets), the generated classical full wavelet systems constitute a frame whose canonical dual are classical full ...
متن کاملEm Field Coupling to Non-uniform Microstrip Lines Using Coupled Multi-conductor Strips Model
Abstract—A model for the two-dimensional analysis of microstrip lines, named Rigorously Coupled Multi-conductor Strip (RCMS) is introduced. In this model, the width of the strip of a microstrip line is subdivided into a large number of rigorously coupled narrow strips. So, a microstrip line can be considered as a coupled multi-conductor transmission line. Determination of the capacitance and in...
متن کاملEFFICIENT NUMERICAL DYNAMIC ANALYSIS OF TENSION LEG PLATFORMS UNDER SEA WAVE LOADS
However it is possible to use of numerical methods such as beta-Newmark in order to investigate the structural response behavior of the dynamic systems under random sea wave loads but because of necessity to analysis the offshore systems for extensive time to fatigue study it is important to use of simple stable methods for numerical integration. The modified Euler method (MEM) is a simple nume...
متن کامل